1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura:

Carrera:

Ingeniería en Industrias Alimentarías

Clave de la asignatura:

Horas teoría- Horas práctica- Créditos:

3-2-8

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios o justificaciones)
Instituto Tecnológico Superior de Uruapan del 10 al 14 de enero del 2005	Representantes de las academias de Ingeniería en Industrias Alimentarias de los institutos tecnológicos	Reunión Nacional de evaluación de la carrera de Ingeniería en Industrias Alimentarias
Institutos Tecnológicos Superiores de Villa Guerrero y Calkini, de enero a abril del 2005	Academia de Ingeniería en Industrias Alimentarias	Análisis y enriquecimiento de los programas de estudio elaborados en la reunión nacional de evaluación
Instituto Tecnológico de Ciudad Valles, del 25 al 29 de abril del 2005	Comité de consolidación de la carrera en Ingeniería en Industrias Alimentarias	Definición de los programas de estudio de la carrera de Ingeniería en Industrias Alimentarias

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores Posteriores

Asignaturas	Temas	Asignaturas	Temas
Química inorgánica	- Materia - Átomo - Tabla Periódica - Formulación y nomenclatura inorgánica - Estequiometría - Agua y soluciones - Cinética química	Bioquímica	 Agua Rutas anabólicas y catabólicas de carbohidratos Rutas anabólicas y catabólicas de lípidos Rutas anabólicas y catabólicas de aminoácidos y proteínas Rutas anabólicas y catabólicas de nucleótidos y metabolitos secundarios Enzimas
		Química de Alimentos	 Agua Carbohidratos Proteínas Lípidos Enzimas Otros constituyentes naturales Composición química, cambios químicos y bioquímicos en los alimentos Aditivos en la Industria alimentaria

b). Aportación de la asignatura al perfil del egresado

Comprender y aplicar los conocimientos teórico-prácticos en la identificación estructural de los grupos funcionales y la química del carbono en diversas moléculas orgánicas que intervienen en el funcionamiento de la célula.

4.- OBJETIVO GENERAL DE LA ASIGNATURA

Comprenderá los fenómenos fisicoquímicos que suceden en los alimentos y controlará las variables en los procesos alimentarios. Comprenderá el comportamiento y propiedades de los compuestos orgánicos que se relacionan con los alimentos, desarrollando la capacidad para analizar, evaluar y diseñar los sistemas de trasformación de alimentos.

5.- TEMARIO

Unidad	Temas		Subtemas
1	Introducción a la química	1.1	Antecedentes. Diferencias entre
	orgánica		compuestos orgánicos e inorgánicos
		1.2	Estructura electrónica del carbono
			1.2.1 Radio atómico
			1.2.2 Electronegatividad
		1.3	Introducción al enlace del carbono
			1.3.1 Distancia de enlace y ángulos de enlace
			1.3.2 Enlaces covalentes
			1.3.2.1 Entalpías de enlace
			1.3.2.2 Entalpías disociación
			1.3.3 Resonancia
			1.3.4 Atracciones entre moléculas
			1.3.5 Orbítales y enlace covalente
			1.3.6 Características generales de
			orbítales de enlace y anti-enlace
			1.3.7 Enlace en las moléculas de
			hidrógeno
			1.3.8 Orbítales híbridos del carbono
			1.3.9 Dobles enlaces conjugados
		1.4	Isomerismo
			1.4.1 Estructural.
			1.4.2 Conformacional
			1.4.3 Configuracional
			1.4.4 Quiralidad molecular
		4 -	1.4.5 Actividad molecular
		1.5	Modelos y proyecciones
			1.5.1 Esferas y barras 1.5.2 Modelos de volumen
			1.5.3 Colores asignados1.5.4 Proyecciones de Fisher
			1.5.5 Proyecciones de Newman
			1.5.6 Proyecciones de Newman

5.- TEMARIO (continuación)

Unidad	Temas		Subtemas
2	Clasificación y estructura	2.1	Compuestos orgánicos
	de los compuestos del		2.1.1 Características estructurales de
	carbono		los compuestos orgánicos
		2.2	Alcanos y cicloalcanos
			2.2.1 Nomenclatura
			2.2.2 Propiedades físicas, químicas y biológicas
		2.3	Hidrocarburos insaturados (alquenos y alquinos)
			2.3.1 Características y nomenclatura
			2.3.2 Propiedades físicas y químicas
			2.3.3 Mecanismo y reacciones de
		2.4	adición de enlaces múltiples
		2.4	Moléculas aromáticas y sus derivados 2.4.1 Propiedades físicas y químicas
			2.4.2 Nomenclatura
			2.4.3 Mecanismos y reacciones de los
			derivados
			2.4.4 Importancia económica
			21111 Importantial desirential
3	Grupos funcionales	3.1	Haluros
			3.1.1 Estructura
			3.1.2 Nomenclatura
			3.1.3 Efecto inductivo y de resonancia
			de halógenos
		3.2	Alcoholes,
			3.2.1 Estructura
			3.2.2 Nomenclatura
			3.2.3 Efecto inductivo y de resonancia del grupo hidroxilo
			3.2.4 Alcoholes industriales y con actividad biológica
		3.3	Fenoles y Éteres
			3.3.1 Generalidades, tipos y
			nomenclatura
			3.3.2 Propiedades físicas y químicas
			3.3.3 Principales fuentes y aplicaciones
		3.4	Aldehídos y Cetonas
			3.4.1 Estructuras y propiedades físicas
			3.4.2 Nomenclatura
			3.4.3 Oxidación y Reducción
			3.4.4 Principales fuentes y sus
			aplicaciones

5.- TEMARIO (continuación)

Unidad	Temas	Subtemas
		3.5 Ácidos carboxílicos y Esteres
		3.5.1 Nomenclatura y propiedades
		físicas
		3.5.2 Conversión de ácidos
		carboxílicos en esteres
		3.5.3 Reacciones principales.
		3.5.4 Principales fuentes y usos
		3.6 Aminas y Amidas
		3.6.1 Clasificación y nomenclatura
		3.6.2 Propiedades físicas y químicas
		3.6.3 Reacciones principales
		3.7 Nitro
		3.7.1 Estructura y nomenclatura
		3.7.2 Compuestos importantes
		3.7.3 Métodos de obtención y
		mecanismos de reacción
		3.8 Compuestos sulfurados
		3.8.1 Tioles
		3.8.2 Tioeteres
		3.8.3 Sulfonas
		3.8.4 Ácidos sulfónicos
		3.8.5 Sulfonoamidas
		3.9 Compuestos Ciano
		3.9.1 Estructura y nomenclatura
		3.9.2 Métodos de obtención
		3.9.3 Mecanismos de reacción
		3.9.4 Importancia biológica industrial
		3.10 Compuestos aromáticos 3.10.1 Nomenclatura de los compuestos
		· ·
		3.10.2 Oxidación y reducción 3.10.3 Nomenclatura de los compuestos
		3.10.4 Principales aplicaciones e
		importancia económica
		3.11 Halogenuros de alquilo
		3.11.1 Clasificación y nomenclatura
		3.11.2 Propiedades físicas y químicas
		3.11.3 Reacciones principales

5.- TEMARIO (continuación)

Unidad	Temas	Subtemas
4	Moléculas de importancia biológica	4.1 Clasificación de compuestos 4.1.1 Carbohidratos 4.1.1.1 Estructura e importancia
		 Ceras 4.1.3 Proteínas 4.1.3.1 Estructura e importancia Aminoácidos Estructuras secundarias y terciarias de las proteínas 4.2 Importancia para la nutrición y la salud

6.- APRENDIZAJES REQUERIDOS

- Química inorgánica.
- Inglés: Comprensión de textos técnicos

7.- SUGERENCIAS DIDÁCTICAS

- Utilización de técnicas de aprendizaje cooperativo, estudio de casos, aprendizaje basado en problemas.
- Empleo de modelos tridimensionales físicos y virtuales para facilitar la visualización de planos y ejes así como para
- facilitar el resultado de las operaciones de simetría y estereoquímica realizadas en moléculas orgánicas.
- Discusiones grupales para justificar las propiedades físicas de los compuestos orgánicos, en relación a su estructura.
- Investigaciones bibliográficas relacionadas con las principales biomoléculas en particular complejos supramoleculares.
- Recabar información relacionada al uso de biomoléculas en procesos industriales

8.- SUGERENCIAS DE EVALUACIÓN

Para evaluar el aprendizaje logrado se recomienda:

- El modelo a escala del compuesto químico
- Los seminarios realizados a lo largo del curso
- La participación en las discusiones que en el aula se desarrollen a través del curso así como en los seminarios
- La actividad organizada dentro de las sesiones prácticas (laboratorio y taller)
- Los reportes de las prácticas
- Los exámenes escritos
- Trabajos de investigación bibliográfica

9.- UNIDADES DE APRENDIZAJE

Unidad 1: Introducción a la química orgánica

Objetivo educacional	Actividades de aprendizaje	Fuentes de información
El estudiante distinguirá las características de las interrelaciones de átomos y moléculas de la química del carbono y su influencia en las propiedades químicas y físicas de estos compuestos. Asimismo, será capaz de distinguir las diferentes conformaciones isoméricas de las biomoléculas, pudiendo representarlas gráficamente.	 Identificar la estructura electrónica del carbono Definir y comprender los conocimientos relativos a enlaces químicos orgánicos, en particular los del carbono, en cuanto a distancia de enlace, enlaces covalentes, orbitales, orbitales híbridos, enlaces conjugados y resonancia, mediante la observación de modelos tridimensionales y software de aplicación. Identificar para moléculas orgánicas y con el empleo de las tablas correspondientes, determine con respecto a cada uno de los enlaces: Tipo de orbítales que forman el enlace Angulo de enlace Polaridad de enlace Energía de enlace Comparar los momentos dipolares de moléculas orgánicas sencillas, en base a la geometría molecular, dirección y magnitud de los momentos dipolares individuales asociados a cada enlace. 	1 2 3 4 5 6 7 8 9 10

Unidad 1: Introducción a la química orgánica (Continuación)

Objetivo educacional	Actividades de aprendizaje	Fuentes de información
educacional	 Reconocer las diferentes conformaciones isoméricas de las moléculas orgánicas en lo relativo al acomodo tridimensional de los átomos de manera que el alumno pueda examinar su conformación real. Illustrar las distintas configuraciones moleculares Empleando los distintos modelos de proyección. Emplear software de representación en tercera dimensión de moléculas orgánicas, identificando: escala utilizada, radios covalentes, longitudes de enlace, ángulos de enlace y tipos de hibridación de los átomos De una amplia serie de representaciones estructurales de compuestos orgánicos, categorizar, analizar e identificar cuales son entre sí: Isómeros estructurales Isómeros conformacionales Enantiómeros Diasteroisómeros Isómeros ópticamente activos Definir los siguientes términos: reacción estereoselectiva, reacción estereoselectiva, reacción de configuración, retención de configuración, retención de configuración, racemización, proquiralidad. Explicar la estereoquímica correspondiente a reacciones donde participen o se formen compuestos quirales, y los cuales se le presenten con los nombres y/o proyecciones de reactivos y productos. 	Información

Objetivo educacional	Actividades de aprendizaje	Fuentes de información
El estudiante distinguirá los	Describir las características físicas, composición y aplicaciones de los	1
diferentes compuestos	compuestos orgánicos que componen a los seres vivos.	2
derivados del carbono, su	Identificar las peculiaridades físicas y químicas de las moléculas saturadas de	3
importancia en los alimentos así como	carbono	4
su diversidad, tipos de reacción y	 Ejemplificar las peculiaridades físicas y químicas de las moléculas insaturadas de carbono 	5
principales propiedades físicas y	 Señalar los diferentes mecanismos químicos y biológicos de saturación y 	6
químicas.	desaturación de moléculas orgánicas.	7
	 Ilustrar los conocimientos relativos a las propiedades químicas y físicas de moléculas aromáticas 	8
	Identificar y discriminar teórica y	9
	prácticamente los compuestos orgánicos con sus puntos de fusión y ebullición.	10

Unidad 3: Grupos funcionales

Objetivo educacional		Actividades de aprendizaje	Fuentes de información
El estudiante aplicará los	•	Analizar entre los diferentes grupos funcionales: su estructura, función e	1
conocimientos básicos para la		importancia en los alimentos, indique su formación y características.	2
identificación de los grupos funcionales	•	Realizar modelos a escala de algunas funciones orgánicas: alcoholes,	3
en las sustancias		aldehídos, cetonas, etc.	4
químicas de la vida	•	Relacionar y explicar la influencia las propiedades químicas de las funciones orgánicas con los alimentos.	5
	•	Distinguir las propiedades entre las	6
		moléculas polares y no polares en función de su capacidad para interactuar con otras moléculas.	7
	•	Indicar la nomenclatura tradicional y IUPAQ de las diferentes estructuras.	8
	•	Realizar prácticas para obtener alcoholes, aldehídos y cetonas de	9
		diferentes fuentes biológicas.	10

Unidad 4: Macromoléculas de importancia biológicas

Objetivo educacional	Actividades de aprendizaje	Fuentes de información
El estudiante	Describir las generalidades, clasificación,	1
conocerá e	configuraciones e identificar las	2
interpretará la	características y funciones de los	3
estructura	compuestos y vitaminas.	4
molecular de los	Relacionar las propiedades físicas y	5
principales	químicas de los compuestos, con el tipo	6
compuestos	de propiedades que desarrollan dentro	7
orgánicos, así como	de un alimento.	8
la importancia que	Desarrollar una investigación relacionada	9
tienen en la	con la estructura de los principales	11
industria alimentaria	compuestos presentes en los alimentos	12
	, , ,	13

10.- FUENTES DE INFORMACIÓN

- 1. Neckers Y Doyle, Química Orgánica, Volumen 1; Ed. Cecsa 1999
- 2. T.N. Graham Solomons; *Fundamentos de Química Orgánica*, Universidad Del Sur De Florida; Ed. Limusa Noriega Editores
- 3. Ralp S. Fessenden; *Química Orgánica*, University Of Montana; Ed. Iberoamericana
- 4. Andrew Streiweiser, Jr. Clayton H. Heathcock; *Química Orgánica*, Universidad De California, Berkeley
- 5. Morrison Boyd, Química Orgánica,
- 6. Wingrove, A. S. Y Caret, R. L., Química Orgánica, Ed. Harla
- 7. K. Peter, C. Vollhardt And N. E. Schore, *Organic Chemistry: Structure And Function*, 3ª Edición. Editorial: W. H. Freeman & Co., New York, 1999. (Traducción al castellano De La 3ª Ed., Editorial Omega, Barcelona).
- 8. T. W. G. Solomons, C. B. Fryhle, *Organic Chemistry*,7^a Edición. Editorial: John Wiley & Sons, New York, 1999.
- 9. F.A. Carey, *Química Orgánica* 3ª Edición. Ed. Mcgraw-Hill. Madrid 1998.
- 10. R. T. Morrison, R. K. Boyd, *Organic Chemistry*, 7^a Edición. Ed. Prentice Hall, New Jersey, 1997.
- 11. S. Ege., *Organic Chemistry, Structure And Reactivity,* 4ª Edición, 1999. (Traducción Castellana Editorial Reverté, Barcelona, 1997).
- A. Streitwieser Jr., C. H. Heathcook. E. M. Kosower, *Organic Chemistry*, 4ª Edición. Ed. Mcmillan Publishing Co., Inc. New York, 1992. (Impresión Revisada 4ª ED. 1998)
- 13. W. R. Peterson, *Formulación y Nomenclatura de Química Orgánica*, Ed. Eunibar, 15ª Edición. Barcelona 1993.

Vínculos De Utilidad:

- 14. http://www.chemhelper.com
- 15. http://www.chem.ucalgary.ca/courses/351/
- 16. http://www.iocd.unam.mx/
- 17. http://www.chemcases.com/
- 18. http://www.uam.es
- 19. http://www.uam.es/departamentos/ciencias/qorg/docencia_red/qo/100/pra
- 20. http://www.chemistrycoach.com/tutorials-0.htm#Atomic%20Structure
- 21. http://www.chemistrycoach.com/whstutor.htm#WHSTutorials
- 22. http://www.chemistry.ohio-state.edu/~lowary/251-1997/index.html

11.- PRACTICAS PROPUESTAS

- Diferencias entre compuestos orgánicos e inorgánicos
- Reacciones de sustitución y condensación
- Desarrollo de modelos a escala de moléculas orgánicas, identificando los grupos funcionales
- Desarrollo de modelos y proyecciones de las moléculas orgánicas
- Identificación de los grupos funcionales en diversos alimentos
- Métodos de obtención de los grupos funcionales
- Determinación de las propiedades físicas de algunos grupos funcionales
- Identificación de las sustancias químicas de la vida en algunos alimentos
- Reacciones generales de las funciones orgánicas